toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Talaga, S.; Petitclerc, F.; Carrias, J.-F.; Dezerald, O.; Leroy, C.; Céréghino, R.; Dejean, A. url  doi
  Title Environmental drivers of community diversity in a neotropical urban landscape: a multi-scale analysis Type Journal Article
  Year 2017 Publication Landscape Ecology Abbreviated Journal Landscape Ecology  
  Volume 32 Issue 9 Pages 1805-1818  
  Keywords Aquatic metacommunity; Landscape ecology; Mosquitoes; Neotropics; Scale dependency; Tank bromeliads; Urban ecology  
  Abstract Context: Many aquatic communities are linked by the aerial dispersal of multiple, interacting species and are thus structured by processes occurring in both the aquatic and terrestrial compartments of the ecosystem. Objectives: To evaluate the environmental factors shaping the aquatic macroinvertebrate communities associated with tank bromeliads in an urban landscape. Methods: Thirty-two bromeliads were georeferenced to assess the spatial distribution of the aquatic meta-habitat in one city. The relative influence of the aquatic and terrestrial habitats on the structure of macroinvertebrate communities was analyzed at four spatial scales (radius = 10, 30, 50, and 70 m) using redundancy analyses. Results: We sorted 18,352 aquatic macroinvertebrates into 29 taxa. Water volume and the amount of organic matter explained a significant part of the taxa variance, regardless of spatial scale. The remaining variance was explained by the meta-habitat size (i.e., the water volume for all of the bromeliads within a given surface area), the distance to the nearest building at small scales, and the surface area of buildings plus ground cover at larger scales. At small scales, the meta-habitat size influenced the two most frequent mosquito species in opposite ways, suggesting spatial competition and coexistence. Greater vegetation cover favored the presence of a top predator. Conclusions: The size of the meta-habitat and urban landscape characteristics influence the structure of aquatic communities in tank bromeliads, including mosquito larval abundance. Modifications to this landscape will affect both the terrestrial and aquatic compartments of the urban ecosystem, offering prospects for mosquito management during urban planning. © 2017, Springer Science+Business Media B.V.  
  Address IRD; UMR AMAP (botAnique et Modélisation de l’Architecture des Plantes et des végétations), Boulevard de la Lironde, TA A‐51/PS2, Montpellier Cedex 5, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 December 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 777  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: