toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Fournier, M.; Dlouhá, J.; Jaouen, G.; Almeras, T. url  openurl
  Title Integrative biomechanics for tree ecology: Beyond wood density and strength Type Journal Article
  Year 2013 Publication Journal of Experimental Botany Abbreviated Journal J. Exp. Bot.  
  Volume 64 Issue 15 Pages 4793-4815  
  Keywords Biomechanics; Ecological strategy; Gravitropism; Shape; Size; Trees; Wood  
  Abstract Functional ecology has long considered the support function as important, but its biomechanical complexity is only just being elucidated. We show here that it can be described on the basis of four biomechanical traits, two safety traits against winds and self-buckling, and two motricity traits involved in sustaining an upright position, tropic motion velocity (MV) and posture control (PC). All these traits are integrated at the tree scale, combining tree size and shape together with wood properties. The assumption of trait constancy has been used to derive allometric scaling laws, but it was more recently found that observing their variations among environments and functional groups, or during ontogeny, provides more insights into adaptive syndromes of tree shape and wood properties. However, oversimpli-fed expressions have often been used, possibly concealing key adaptive drivers. An extreme case of oversimplification is the use of wood basic density as a proxy for safety. Actually, as wood density is involved in stiffiness, loads, and construction costs, the impact of its variations on safety is non-trivial. Moreover, other wood features, especially the microfibril angle (MFA), are also involved. Furthermore, wood is not only stiff and strong, but it also acts as a motor for MV and PC. The relevant wood trait for this is maturation strain asymmetry. Maturation strains vary with cell-wall characteristics such as MFA, rather than with wood density. Finally, the need for further studies about the ecological relevance of branching patterns, motricity traits, and growth responses to mechanical loads is discussed. © The Author 2013.  
  Address CNRS, Université de Montpellier 2, Laboratoire de Mécanique et Génie Civil, 34095 Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220957 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996):1; Export Date: 2 December 2013; Source: Scopus; Coden: Jeboa; doi: 10.1093/jxb/ert279; Language of Original Document: English; Correspondence Address: Fournier, M.; AgroParisTech, UMR 1092 LERFOB, 54000 Nancy, France; email:; References: Achim, A., Ruel, J.C., Gardiner, B.A., Lafamme, G., Meunier, S., Modelling the vulnerability of balsam fr forests to wind damage (2005) Forest Ecology and Management, 204, pp. 35-50; Almeras, T., Costes, E., Salles, J.C., Identification of biomechanical factors involved in stem shape variability between apricot-tree varieties (2004) Annals of Botany, 93, pp. 1-14; Almeras, T., Derycke, M., Jaouen, G., Beauchene, J., Fournier, M., Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits (2009) Journal of Experimental Botany, 60, pp. 4397-4410; Almeras, T., Fournier, M., Biomechanical design and longterm stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction (2009) Journal of Theoretical Biology, 256, pp. 370-381; Almeras, T., Gril, J., Costes, E., Bending of apricot tree branches under the weight of axillary growth: Test of a mechanical model with experimental data (2002) Trees – Structure and Function, 16, pp. 5-15; Almeras, T., Thibaut, A., Gril, J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees (2005) Trees – Structure and Function, 19, pp. 457-467; Anten, N.P.R., Schieving, F., The role of wood mass density and mechanical constraints in the economy of tree architecture (2010) American Naturalist, 175, pp. 250-260; Archer, R.R., Wilson, B.F., Mechanics of the compression wood response II. On the location, action, and distribution of compression wood formation (1973) Plant Physiology, 51, pp. 777-782; Auclair, D., Nepveu, G., The CAQ network in France: 15 years of brainstorming and cooperative work to connect forest resources and wood quality through modelling approaches and simulation software (2012) Annals of Forest Science, 69, pp. 119-123; Baltunis, B.S., Wu, H.X., Powell, M.B., Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of pinus radiata at two locations in Australia (2007) Canadian Journal of Forest Research, 37, pp. 2164-2174; Banin, L., Fieldpausch, T.R., Phillips, O.L., What controls tropical forest architecture? Testing environmental, structural and foristic drivers (2012) Global Ecology and Biogeography, 21, pp. 1179-1190; Baskin, T.I., Jensen, O.E., On the role of stress anisotropy in the growth of stems (2013) Journal of Experimental Botany, 64, pp. 4697-4707; Bastien, R., Bohr, T., Moulia, B., Douady, S., Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants (2013) Proceedings of the National Academy of Sciences, USA, 110, pp. 755-760; Boiffin, J., (2008) Variabilité de Traits Anatomiques, Mécaniques et Hydrauliques Ches les Juvéniles de Vingt-deux Espèces D'arbres de Sous-bois en Forêt Tropicales Humide, , Masters thesis, Université Henri Poincaré, Nancy, France; Boudaoud, A., An introduction to the mechanics of morphogenesis for plant biologists (2010) Trends in Plant Science, 15, pp. 353-360; Burgert, I., Frühmann, K., Keckes, J., Fratzl, P., Stanzl-Tschegg, S., Structure-function relationships of four compression wood types: Micromechanical properties at the tissue and fibre (2004) Trees – Structure and Function, 18, pp. 480-485; Burgert, I., Exploring the micromechanical design of plant cell walls (2006) American Journal of Botany, 93, pp. 1391-1401; Butler, D.W., Gleason, S.M., Davidson, I., Onoda, Y., Westoby, M., Safety and streamlining of woody shoots in wind: An empirical study across 39 species in tropical Australia (2012) New Phytologist, 193, pp. 137-149; Cao, J., Tamura, Y., Yoshida, A., Wind tunnel study on aerodynamic characteristics of shrubby specimens of three tree species (2012) Urban Forestry & Urban Greening, 11, pp. 465-476; Carlquist, S., (2001) Comparative Wood Anatomy: Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood, , Berlin: Springer; Chapman, C.A., Kaufman, L., Chapman, L.J., Buttress formation and directional stress experienced during critical phases of tree development (1998) Journal of Tropical Ecology, 14, pp. 341-349; Chapotin, S.M., Razanameharizaka, J.H., Holbrook, N.M., Abiomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; bombacaceae) (2006) American Journal of Botany, 93, pp. 1251-1264; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecology Letters, 12, pp. 351-366; Chevolot, M., Louisanna, E., Azri, W., Leblanc-Fournier, N., Roeckel-Drevet, P., Scotti-Saintagne, C., Scotti, I., Isolation of primers for candidate genes for mechano-sensing in five neotropical tree species (2011) Tree Genetics & Genomes, 7, pp. 655-661; Clair, B., Almeras, T., Pilate, G., Jullien, D., Sugiyama, J., Riekel, C., Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction (2011) Plant Physiology, 155, pp. 562-570; Clair, B., Almeras, T., Ruelle, J., Fournier, M., Reaction mechanisms for the shape control in angiosperms tension wood: Diversity, efficiency, limits and alternatives (2006) Proceedings of the Fifth Plant Biomechanics Conference, pp. 467-472. , 28 August-1 September 2006, Stockholm, Sweden. Stockholm, Suède: STFI-Packforsk AB; Clair, B., Fournier, M., Prévost, M.F., Beauchêne, J., Bardet, S., Biomechanics of buttressed trees: Bending strains and stresses (2003) American Journal of Botany, 90, pp. 1349-1356; Collet, C., Fournier, M., Ningre, F., Hounzandji, A.P.I., Constant, T., Growth and posture control strategies in fagus sylvatica and acer pseudoplatanus saplings in response to canopy disturbance (2011) Annals of Botany, 107, pp. 1345-1353; Coutand, C., Fournier, M., Moulia, B., The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation (2007) Plant Physiology, 144, pp. 1166-1180; Darwin, C., Darwin, F.E., (1880) The Power of Movement in Plants, , London: Murray; Dassot, M., Constant, T., Fournier, M., The use of terrestrial LiDAR technology in forest science: Application fields, benefts and challenges (2011) Annals of Forest Science, 68, pp. 959-974; Dassot, M., Fournier, M., Ningre, F., Constant, T., Effect of tree size and competition on tension wood production over time in beech plantations and assessing relative gravitropic response with a biomechanical model (2012) American Journal of Botany, 99, pp. 1427-1435; De Langre, E., Effects of wind on plants (2008) Annual Review of Fluid Mechanics, 40, pp. 141-168; Dean, T.J., Long, J.N., Validity of constant stress and elastic-principles of stem formation in pinus contorta and trifolium pratense (1986) Annals of Botany, 58, pp. 833-740; Delcamp, M., Gourlet-Fleury, S., Flores, O., Gamier, E., Can functional classification of tropical trees predict population dynamics after disturbance? (2008) Journal of Vegetation Science, 19, pp. 209-220; Donaldson, L., Microfibril angle: Measurement, variation and relationship – A review (2008) IAWA Bulletin, 29, pp. 345-386; Duchateau, E., (2008) Diversité des Capacités de Réaction Gravitropique de Jeunes Arbres en Forêt Tropicale Humide, , Masters thesis, Université Henri Poincaré, Nancy, France; Eloy, C., Leonardo's rule, self-similarity, and wind-induced stresses in trees (2011) Physical Review Letters, 107, p. 258101; Ennos, A.R., The mechanics of root anchorage (2000) Advances in Botanical Research Incorporating Advances in Plant Pathology, 33, pp. 133-157; Evans, R., Ilic, J., Rapid prediction of wood stiffiness from microfibril angle and density (2001) Forest Products Journal, 51, pp. 53-57; Favrichon, V., Classification des especes arborees en groupes fonctionnels en vue de la realisation d'un modele de dynamique de peuplement en foret guyanaise (1994) Revue de Ecologie (Terre et Vie), 49, pp. 379-403; Fengel, D., Wegener, G., (1984) Wood. Chemistry, Ultrastructure, Reactions, , Berlin/New York: de Gruyter; Ferrand, J.C., Study of growth stresses: 1. Measurement method on increment cores (1982) Annales des Sciences Forestieres, 39, pp. 109-142; Fortunel, C., Fine, P.V.A., Baraloto, C., Leaf, stem and root tissue strategies across 758 neotropical tree species (2012) Functional Ecology, 26, pp. 1153-1161; Fournier, M., Baillères, H., Chanson, B., Tree biomechanics: Growth, cumulative prestresses, and reorientations (1994) Biomimetics, 2, pp. 229-251; Fournier, M., Chanson, B., Thibaut, B., Guitard, D., Measurement of residual growth strains at the stem surface. Observations on different species (1994) Annales des Sciences Forestieres, 51, pp. 249-266; Fournier, M., Stokes, A., Coutand, C., Fourcaud, T., Moulia, B., Tree biomechanics and growth strategies in the context of forest functional ecology (2006) Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants, pp. 1-34. , Herrel A, Speck T, Rowe N, eds. Boca Raton, FL: CRC Press; Gardiner, B., Byrne, K., Hale, S., Kamimura, K., Mitchell, S.J., Peltola, H., Ruel, J.-C., A review of mechanistic modelling of wind damage risk to forests (2008) Forestry, 81, pp. 447-463; Gibson, L.J., Ashby, M.F., (1997) Cellular Solids; Structure and Properties, , Cambridge: Cambridge University Press; Givnish, T.J., Ecological constraints on the evolution of plasticity in plants (2002) Evolutionary Ecology, 16, pp. 213-242; Gordon, J.E., (1978) Structures or Why Things do Not Fall Down, , Harmondsworth: Penguin Books; Greenhill, A., Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to which a tree of given proportions can grow (1881) Proceedings of the Cambridge Philosophical Society, 4, pp. 65-73; Grime, J.P., (2001) Plant Strategies, Vegetation Processes, and Ecosystem Properties, , Chichester; UK: John Wiley & Sons; Hamilton, J.R., Thomas, C.K., Carvell, K.L., Tension wood formation following release of upland oak advance reproduction (1985) Wood and Fiber Science, 17, pp. 382-390; Hejnowicz, Z., Graviresponses in herbs and trees: A major role for the redistribution of tissue and growth stresses (1997) Planta, 203, pp. S136-S146; Herault, B., Bachelot, B., Poorter, L., Rossi, V., Bongers, F., Chave, J., Paine, C.E.T., Baraloto, C., Functional traits shape ontogenetic growth trajectories of rain forest tree species (2011) Journal of Ecology, 99, pp. 1431-1440; Holbrook, N.M., Putz, F.E., Influence of neighbors on tree form: Effects of lateral shade and prevention of sway on the allometry of liquidambar styracifua (sweet gum) (1989) American Journal of Botany, 76, pp. 1740-1749; Huang, Y.S., Hung, L.F., Kuo-Huang, L.L., Biomechanical modeling of gravitropic response of branches: Roles of asymmetric periphery growth strain versus self-weight bending effect (2010) Trees – Structure and Function, 24, pp. 1151-1161; Iino, M., Toward understanding the ecological functions of tropisms: Interactions among and effects of light on tropisms (2006) Current Opinion in Plant Biology, 9, pp. 89-93; James, K.R., Haritos, N., Ades, P.K., Mechanical stability of trees under dynamic loads (2006) American Journal of Botany, 93, pp. 1522-1530; Jaouen, G., Almeras, T., Coutand, C., Fournier, M., How to determine sapling buckling risk with only a few measurements (2007) American Journal of Botany, 94, pp. 1583-1593; Jaouen, G., Fournier, M., Almeras, T., Thigmomorphogenesis versus light in biomechanical growth strategies of saplings of two tropical rain forest tree species (2010) Annals of Forest Science, 67, p. 211; Jaouen, G., (2007) Etude des Stratégies Biomécaniques de Croissance des Jeunes Arbres en Peuplement Hétérogène Tropical Humide, , Thèse de doctorat, Université Henri Poincaré, Nancy, France; Johnson, E.A., Miyanishi, K., (2007) Plant Disturbance Ecology: The Process and the Response, , New York: Academic Press; Jullien, D., Widmann, R., Loup, C., Thibaut, B., Relationship between tree morphology and growth stress in mature european beech stands (2013) Annals of Forest Science, 70, pp. 133-142; Jungnikl, K., Goebbels, J., Burgert, I., Fratzl, P., The role of material properties for the mechanical adaptation at branch junctions (2009) Trees – Structure and Function, 23, pp. 605-610; Kellogg, R.M., Wangaard, F.F., Variation in the cell-wall density of wood (1969) Wood and Fiber Science, 1, pp. 180-204; King, D., Loucks, O.L., Theory of tree bole and branch form (1978) Radiation and Environmental Biophysics, 15, pp. 141-165; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., The role of wood density and stem support costs in the growth and mortality of tropical trees (2006) Journal of Ecology, 94, pp. 670-680; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., Trees approach gravitational limits to height in tall lowland forests of Malaysia (2009) Functional Ecology, 23, pp. 284-291; Kooyman, R.M., Westoby, M., Costs of height gain in rainforest saplings: Main-stem scaling, functional traits and strategy variation across 75 species (2009) Annals of Botany, 104, pp. 987-993; Lachenbruch, B., Johnson, G.R., Downes, G.M., Evans, R., Relationships of density, microfibril angle, and sound velocity with stiffiness and strength in mature wood of douglas-fr (2010) Canadian Journal of Forest Research, 40, pp. 55-64; Lachenbruch, B., Moore, J.R., Evans, R., Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence (2011) Size-and Age-related Changes in Tree Structure and Function, pp. 121-164. , Meinzer FC, Lachenbruch B, Dawson TE, eds. Netherlands: Springer; Lang, A.C., Haerdtle, W., Bruelheide, H., Geissler, C., Nadrowski, K., Schuldt, A., Yu, M., Von Oheimb, G., Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China (2010) Forest Ecology and Management, 260, pp. 1708-1715; Larjavaara, M., Maintenance cost, toppling risk and size of trees in a self-thinning stand (2010) Journal of Theoretical Biology, 265, pp. 63-67; Larjavaara, M., Muller-Landau, H.C., Rethinking the value of high wood density (2010) Functional Ecology, 24, pp. 701-705; Larjavaara, M., Muller-Landau, H.C., Still rethinking the value of high wood density (2012) American Journal of Botany, 99, pp. 165-168; Lens, F., Smets, E., Melzer, S., Stem anatomy supports arabidopsis thaliana as a model for insular woodiness (2012) New Phytologist, 193, pp. 12-17; Lopez, D., Michelin, S., De Langre, E., Flow-induced pruning of branched systems and brittle reconfguration (2011) Journal of Theoretical Biology, 284, pp. 117-124; Makela, A., Grace, J.C., Deckmyn, G., Kantola, A., Campioli, M., Simulating wood quality in forest management models (2010) Forest Systems, 19, pp. 48-68; Martínez-Cabrera, H.I., Schenk, H.J., Cevallos-Ferriz, S.R.S., Jones, C.S., Integration of vessel traits, wood density, and height in angiosperm shrubs and trees (2011) American Journal of Botany, 98, pp. 915-922; Martone, P.T., Boller, M., Burgert, I., Dumais, J., Edwards, J., Mach, K., Rowe, N., Speck, T., Mechanics without muscle: Biomechanical inspiration from the plant world (2010) Integrative and Comparative Biology, 50, pp. 888-907; Matsuzaki, J., Masumori, M., Tange, T., Stem phototropism of trees: A possible significant factor in determining stem inclination on forest slopes (2006) Annals of Botany, 98, pp. 573-581; McMahon, T.A., Size and shape in biology (1973) Science, 179, pp. 1202-1204; Medhurst, J., Downes, G., Ottenschlaeger, M., Harwood, C., Evans, R., Beadle, C., Intra-specific competition and the radial development of wood density, microfibril angle and modulus of elasticity in plantation-grown eucalyptus nitens (2012) Trees – Structure and Function, 26, pp. 1771-1780; Menard, L., McKey, D., Rowe, N., Developmental plasticity and biomechanics of treelets and lianas in manihot aff. Quinquepartita (Euphorbiaceae): A branch-angle climber of french guiana (2009) Annals of Botany, 103, pp. 1249-1259; Moulia, B., Plant biomechanics and mechanobiology are convergent paths to fourishing interdisciplinary research (2013) Journal of Experimental Botany, 64, pp. 4617-4633; Moulia, B., Coutand, C., Lenne, C., Posture control and skeletal mechanical acclimation in terrestrial plants: Implications for mechanical modeling of plant architecture (2006) American Journal of Botany, 93, pp. 1477-1489; Moulia, B., Der Loughian, C., Bastien, R., Integrative mechanobiology of growth and architectural development in changing mechanical environments (2011) Mechanical Integration of Plant Cells and Plants, 9, pp. 269-302. , Wojtaszek P, ed. Berlin/Heidelberg: Springer; Moulia, B., Fournier, M., The power and control of gravitropic movements in plants: A biomechanical and systems biology view (2009) Journal of Experimental Botany, 60, pp. 461-486; Moulia, B., Fournier-Djimbi, M., Optimal mechanical design of plant stems: The models behind the allometric power laws (1997) Proceedings of the First Plant Biomechanics Conference, , Vincent JFV, Jeronimidis G, eds. Reading: Centre for Biomimetics; Niklas, K.J., Dependency of the tensile modulus on transverse dimensions, water potential, and cell number of pith parenchyma (1988) American Journal of Botany, 75, pp. 1286-1292; Niklas, K.J., Plant biomechanics (1992) An Engineering Approach to Plant Form and Function, , Chicago: University of Chicago Press; Niklas, K.J., Plant allometry (1994) The Scaling of Form and Process, , Chicago: University of Chicago Press; Niklas, K.J., Mechanical properties of black locust (Robinia pseudoacacia L.) wood. Size- and age-dependent variations in sap-and heartwood (1997) Annals of Botany, 79, pp. 265-272; Niklas, K.J., Computing factors of safety against wind-induced tree stem damage (2000) Journal of Experimental Botany, 51, pp. 797-806; Niklas, K.J., Maximum plant height and the biophysical factors that limit it (2007) Tree Physiology, 27, pp. 433-440; Niklas, K.J., Cobb, E.D., Marler, T., A comparison between the record height-to-stem diameter allometries of pachycaulis and leptocaulis species (2006) Annals of Botany, 97, pp. 79-83; Niklas, K.J., Spatz, H.C., Vincent, J., Plant biomechanics: An overview and prospectus (2006) American Journal of Botany, 93, pp. 1369-1378; Niklas, K.J., Spatz, H.-C., Response to klaus mattheck's letter (2000) Trees – Structure and Function, 15, pp. 64-65; Niklas, K.J., Spatz, H.C., Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass (2004) Proceedings of the National Academy of Sciences, USA, 101, pp. 15661-15663; Niklas, K.J., Spatz, H.C., Worldwide correlations of mechanical properties and green wood density (2010) American Journal of Botany, 97, pp. 1587-1594; Osunkoya, O.O., Omar-Ali, K., Amit, N., Dayan, J., Daud, D.S., Sheng, T.K., Comparative height-crown allometry and mechanical design in 22 tree species of kuala belalong rainforest, brunei, borneo (2007) American Journal of Botany, 94, pp. 1951-1962; Plucinski, M., Plucinski, S., Rodriguez-Iturbe, I., Consequences of the fractal architecture of trees on their structural measures (2008) Journal of Theoretical Biology, 251, pp. 82-92; Pretzsch, H., Forest dynamics, growth and yield (2009) From Measurement to Model, , Heidelberg: Springer; Read, J., Evans, R., Sanson, G.D., Kerr, S., Jaffre, T., Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment (2011) American Journal of Botany, 98, pp. 1762-1772; Read, J., Stokes, A., Plant biomechanics in an ecological context (2006) American Journal of Botany, 93, pp. 1546-1565; Rodriguez, M., Langre, E., Moulia, B., A scaling law for the effects of architecture and allometry on tree vibration modes suggests a biological tuning to modal compartmentalization (2008) American Journal of Botany, 95, pp. 1523-1537; Rowe, N., Speck, T., Plant growth forms: An ecological and evolutionary perspective (2005) New Phytologist, 166, pp. 61-72; Salmen, L., Burgert, I., Cell wall features with regard to mechanical performance. A review COST action E35 2004-2008: Wood machining – Micromechanics and fracture (2009) Holzforschung, 63, pp. 121-129; Saren, M.P., Serimaa, R., Andersson, S., Saranpaa, P., Keckes, J., Fratzl, P., Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids of Norway spruce (2004) Trees – Structure and Function, 18, pp. 354-362; Schindler, D., Bauhus, J., Mayer, H., Wind effects on trees (2012) European Journal of Forest Research, 131, pp. 159-163; Scurfield, G., Reaction wood: Its structure and function (1973) Science, 179, pp. 647-655; Sellier, D., Fourcaud, T., Crown structure and wood properties: Influence on tree sway and response to high winds (2009) American Journal of Botany, 96, pp. 885-896; Siau, J.F., (1984) Transport Processes in Wood, , Berlin/Heidelberg: Springer; Sierra-De-Grado, R., Pando, V., Martinez-Zurimendi, P., Penalvo, A., Bascones, E., Moulia, B., Biomechanical differences in the stem straightening process among pinus pinaster provenances. A new approach for early selection of stem straightness (2008) Tree Physiology, 28, pp. 835-846; Sterck, F.J., Bongers, F., Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees (1998) American Journal of Botany, 85, pp. 266-272; Stokes, A., (2000) The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology, , Dordrecht, The Netherlands: Kluwer Academic Publishers; Sultan, S.E., Phenotypic plasticity for plant development, function and life history (2000) Trends in Plant Science, 5, pp. 537-542; Swenson, N.G., Enquist, B.J., Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation (2007) American Journal of Botany, 94, pp. 451-459; Taneda, H., Tateno, M., The criteria for biomass partitioning of the current shoot: Water transport versus mechanical support (2004) American Journal of Botany, 91, pp. 1949-1959; Tateno, M., Increase in lodging safety factor on thigmomorphogenetically dwarfed shoots of mulberry tree (1991) Physiologia Plantarum, 81, pp. 239-243; Tobin, B., Cermak, J., Chiatante, D., Towards developmental modelling of tree root systems (2007) Plant Biosystems, 141, pp. 481-501; Turner, I.M., (2001) The Ecology of Trees in the Tropical Rain Forest, , Cambridge: Cambridge University Press; Van Gelder, H.A., Poorter, L., Sterck, F.J., Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community (2006) New Phytologist, 171, pp. 367-378; Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., Let the concept of trait be functional! (2007) Oikos, 116, pp. 882-892; Waghorn, M.J., Watt, M.S., Stand variation in pinus radiata and its relationship with allometric scaling and critical buckling height (2013) Annals of Botany, 111, pp. 675-680; Watt, M.S., Moore, J.R., Facon, J.-P., Modelling environmental variation in young's modulus for pinus radiata and implications for determination of critical buckling height (2006) Annals of Botany, 98, pp. 765-775; Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., Plant ecological strategies: Some leading dimensions of variation between species (2002) Annual Review of Ecology and Systematics, 33, pp. 125-159; Wright, I.J., Reich, P.B., Westoby, M., The worldwide leaf economics spectrum (2004) Nature, 428, pp. 821-827; Wright, S.D., McConnaughay, K.D.M., Interpreting phenotypic plasticity: The importance of ontogeny (2002) Plant Species Biology, 17, pp. 119-131; Xu, P., Liu, H., Models of microfibril elastic modulus parallel to the cell axis (2004) Wood Science and Technology, 38, pp. 363-374; Yang, J.L., Bailleres, H., Evans, R., Downes, G., Evaluating growth strain of eucalyptus globulus labill. From SilviScan measurements (2006) Holzforschung, 60, pp. 574-579; Yang, J.L., Evans, R., Prediction of MOE of eucalypt wood from microfibril angle and density (2003) Holz Als Roh und Werkstoff, 61, pp. 449-452; Yoshida, M., Okuyama, T., Techniques for measuring growth stress on the xylem surface using strain and dial gauges (2002) Holzforschung, 56, pp. 461-467; Zhang, S.-B., Slik, J.W.F., Zhang, J.-L., Cao, K.-F., Spatial patterns of wood traits in China are controlled by phylogeny and the environment (2011) Global Ecology and Biogeography, 20, pp. 241-250 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 513  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: