toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dejean, A.; Djieto-Lordon, C.; Cereghino, R.; Leponce, M. openurl 
  Title Ontogenetic succession and the ant mosaic: An empirical approach using pioneer trees Type Journal Article
  Year 2008 Publication Basic and Applied Ecology Abbreviated Journal Basic Appl. Ecol.  
  Volume 9 Issue 3 Pages 316-323  
  Keywords (up) ant-plant relationships; dynamics of associations; myrmecophytes; species turnover; tropical rainforests  
  Abstract Arboreal ant mosaics have been intensively investigated, but what generates these mosaics remains poorly understood. In this paper, we hypothesize that the dynamics of arboreal ant mosaics could be better understood by examining the ontogenetic succession of ants in tropical trees. We used three African pioneer tree species as biological models. Lophira alata (Ochnaceae) is a long-lived species that does not furnish any reward (i.e., extra-floral nectaries [EFNs], shelter) to ants, Anthocleista vogelii (Gentianaceae) bears extremely well-developed EFNs, and Barteria fistulosa (Passifloraceae) is a long-lived myrmecophyte providing both EFNs and domatia. For both L. alata and A. vogelii, we noted a succession of different associated ants as the plants grew and aged. Ground-nesting, arborealforaging ant species were the first associates, followed by arboreal species that build nests with the leaves of their host trees, together with some species nesting opportunistically in pre-existing cavities. Carton-building Crematogaster species were the last in this succession. The presence of EFNs on A. vogelii slows species turnover, demonstrating that the plant exerts some control over its ant associates. The comparison with B. fistulosa, which generally remains associated with the same plant-ant species during its entire ontogeny, highlights the importance of the selective attractiveness of the trees for their associated ants – or, perhaps, the existence of plant filters that screen arriving ants. (C) 2007 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.  
  Address [Dejean, Alain] CNRS Guyane, UPS 2561, F-97300 Cayenne, France, Email: alain.dejean@wanadoo.fr  
  Corporate Author Thesis  
  Publisher ELSEVIER GMBH, URBAN & FISCHER VERLAG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-1791 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000256734600013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 138  
Permanent link to this record
 

 
Author Dejean, A.; Petitclerc, F.; Azémar, F. doi  openurl
  Title Seasonality influences ant-mediated nutrient acquisition (myrmecotrophy) by a Neotropical myrmecophyte Type Journal Article
  Year 2020 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.  
  Volume 34 Issue 4 Pages 645-657  
  Keywords (up) Ant-plant relationships; Mutualism; Myrmecophyte; Myrmecotrophy; Phenology; Stable isotopes; ant; herb; host plant; life cycle; myrmecochory; myrmecophyte; Neotropical Region; phenology; seasonality; stable isotope; understory; Gentianaceae; Tachia; Tachia guianensis  
  Abstract Tachia guianensis (Gentianaceae), a Neotropical understory myrmecophyte, shelters ant colonies in its hollow trunks and branches (domatia). In turn, it is protected from defoliators and obtains nutrients from ant-produced wastes (myrmecotrophy). Aiming to verify if seasonality influences nitrogen assimilation via ant wastes using the stable isotope nitrogen-15, we first studied Tachia’s phenology and its seasonal leaf production, and then the life cycle of its two more frequent guest ant species. We found that leaf production was much higher during the rainy than the dry season. Mature guest ant colonies produced sexuals regardless of the season and the net weight of the waste piles inside the domatia did not vary between seasons, so that the availability of nutrients to their host plant is steady year-long. By providing the two most frequent mutualistic guest ant species with food enriched with nitrogen-15, we showed that Tachia individuals assimilate more nitrogen from ant wastes during the rainy season, when the plant is physiologically active, compared to the dry season. Thus, one can deduce that the increase in nitrogen assimilation during the rainy season is determined by the increase in Tachia’s physiological activity during that season. Information gathered through a bibliographic compilation confirms that none of the 15 ant species known to be associated with myrmecophytes for which the life cycle was studied is characterized by seasonal reproduction (which would result in fluctuating waste production). The same is true for 49.7% of 167 tropical ant species (seasonal production for the remaining species). We concluded that, in contrast to the non-seasonal ant colony reproductive cycle, Tachia’s phenology determines the myrmecotrophic assimilation rate. © 2020, Springer Nature Switzerland AG.  
  Address CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 02697653 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 956  
Permanent link to this record
 

 
Author Malé, P.-J.G.; Leroy, C.; Lusignan, L.; Petitclerc, F.; Quilichini, A.; Orivel, J. doi  openurl
  Title The reproductive biology of the myrmecophyte, Hirtella physophora, and the limitation of negative interactions between pollinators and ants Type Journal Article
  Year 2015 Publication Arthropod-Plant Interactions Abbreviated Journal Arthropod-Plant Interactions  
  Volume 9 Issue 1 Pages 23-31  
  Keywords (up) Ant-plant; Ant–pollinator interactions; Floral structure and display; Plant reproductive biology; Spatial and temporal segregation  
  Abstract Myrmecophytism occurs in plants that offer ants a nesting space and, often, food rewards in exchange for protection from predators and competitors. Such biotic protection by ants can, however, interfere with the activity of pollinators leading to potential negative consequences for the plant’s reproduction. In this study, we focused on the association between the understory myrmecophyte, Hirtella physophora (Chrysobalanaceae), and its obligate ant partner, Allomerus decemarticulatus (Myrmicinae). We investigated the reproductive biology of H. physophora and the putative mechanisms that may limit ant–pollinator conflict. Our results show that H. physophora is an obligate outcrosser, self-incompatible, and potentially insect-pollinated species. The reproduction of H. physophora relies entirely on pollen transfer by pollinators that are likely quite specific. Potential interference between flower-visiting insects during pollination may also be lessened by a spatial and temporal segregation of ant and pollinator activities, thus enabling pollen transfer and fruit production. © 2014, Springer Science+Business Media Dordrecht.  
  Address IRD, UMR AMAP (botAnique et bioinforMatique de l’Architecture des Plantes), Boulevard de la Lironde, TA A-51/PS2Montpellier Cedex 5, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 April 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 593  
Permanent link to this record
 

 
Author Corbara, B.; Servigne, P.; Dejean, A.; Carpenter, J.M.; Orivel, J. url  doi
openurl 
  Title A mimetic nesting association between a timid social wasp and an aggressive arboreal ant Type Journal Article
  Year 2018 Publication Comptes Rendus Biologies Abbreviated Journal  
  Volume 341 Issue 3 Pages 182-188  
  Keywords (up) Ant-wasp interactions; ; ; Mimicry; Nest site selection; Relations guêpes-fourmis; ; ; Mimétisme; Sélection du site de nidification  
  Abstract In French Guiana, the arboreal nests of the swarm-founding social wasp Protopolybia emortualis (Polistinae) are generally found near those of the arboreal dolichoderine ant Dolichoderus bidens. These wasp nests are typically protected by an envelope, which in turn is covered by an additional carton ‘shelter’ with structure resembling the D. bidens nests. A few wasps constantly guard their nest to keep D. bidens workers from approaching. When alarmed by a strong disturbance, the ants invade the host tree foliage whereas the wasps retreat into their nest. Notably, there is no chemical convergence in the cuticular profiles of the wasps and ants sharing a tree. The aggressiveness of D. bidens likely protects the wasps from army ant raids, but the ants do not benefit from the presence of the wasps; therefore, this relationship corresponds to a kind of commensalism. Résumé En Guyane française, les nids de la guêpe Protopolybia emortualis (Polistinae) se trouvent généralement à proximité de ceux de la fourmi arboricole Dolichoderus bidens (Dolichoderinae). Ces nids de guêpes sont typiquement protégés par une enveloppe de carton, elle-même recouverte d’une autre enveloppe formant un abri qui ressemble aux nids de carton de D. bidens. Quelques guêpes gardent leur nid en permanence afin de tenir à distance les ouvrières D. bidens. Alarmées par une forte perturbation, les fourmis envahissent tout le feuillage de leur arbre support alors que les guêpes se réfugient dans leur nid. Il n’y a pas de convergence chimique entre les profils cuticulaires des guêpes et ceux des fourmis associées. Il est très probable que les P. emortualis bénéficient d’une protection contre les fourmis légionnaires grâce à l’agressivité des D. bidens, mais il n’y a pas réciprocité, de sorte que cette relation correspond à une forme de commensalisme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0691 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 825  
Permanent link to this record
 

 
Author Scotti, I.; Delph, L.F. openurl 
  Title Selective trade-offs and sex-chromosome evolution in Silene latifolia Type Journal Article
  Year 2006 Publication Evolution Abbreviated Journal Evolution  
  Volume 60 Issue 9 Pages 1793-1800  
  Keywords (up) antagonistic genes; linkage map; quantitative trait loci; sex-specific expression; Y chromosome  
  Abstract Alleles of sexually antagonistic genes (i.e., genes with alleles affecting fitness in opposite directions in the two sexes) can avoid expression in the sex to which they are detrimental via two processes: they are subsumed into the nonrecombining, sex-determining portion of the sex chromosomes or they evolve sex-limited expression. The former is considered more likely and leads to Y-chromosome degeneration. We mapped quantitative trait loci of major effect for sexually dimorphic traits of Silene latifolia to the recombining portions of the sex chromosomes and found them to exhibit sex-specific expression, with the Y chromosome in males controlling a relatively larger proportion of genetic variance than the X in females and the average autosome. Both reproductive and ecophysiological traits map to the recombining region of the sex chromosomes. We argue that genetic correlations among traits maintain recombination and polymorphism for these genes because of balancing selection in males, whereas sex-limited expression represses detrimental alleles in females. Our data suggest that the Y chromosome of S. latifolia plays a major role in the control of key metabolic activities beyond reproductive functions.  
  Address Indiana Univ, Dept Biol, Bloomington, IN 47405 USA, Email: ivan.scotti@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher SOC STUDY EVOLUTION Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-3820 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000241226800005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 174  
Permanent link to this record
 

 
Author Bodin, S.C.; Scheel-Ybert, R.; Beauchene, J.; Molino, J.-F.; Bremond, L. url  doi
openurl 
  Title CharKey: An electronic identification key for wood charcoals of French Guiana Type Journal Article
  Year 2019 Publication IAWA Journal Abbreviated Journal Iawa J.  
  Volume 40 Issue 1 Pages 75-91  
  Keywords (up) anthracology; Charcoal anatomy; computeraided identification; Note: Supplementary material can be accessed in the online edition of this journal via brill.com/iawa.; tropical flora; Xper 2  
  Abstract Tropical tree floras are highly diverse and many genera and species share similar anatomical patterns, making the identification of tropical wood charcoal very difficult. Appropriate tools to characterize charcoal anatomy are thus needed to facilitate and improve identification in such species-rich areas. This paper presents the first computer-aided identification key designed for charcoals from French Guiana, based on the wood anatomy of 507 species belonging to 274 genera and 71 families, which covers respectively 28%, 67% and 86% of the tree species, genera and families currently listed in this part of Amazonia. Species of the same genus are recorded together except those described under a synonym genus in Détienne et al. (1982) that were kept separately. As a result, the key contains 289 'items' and mostly aims to identify charcoals at the genus level. It records 26 anatomical features leading to 112 feature states, almost all of which are illustrated by SEM photographs of charcoal. The descriptions were mostly taken from Détienne et al.'s guidebook on tropical woods of French Guiana (1982) and follow the IAWA list of microscopic features for hardwood identification (Wheeler et al. 1989). Some adjustments were made to a few features and those that are unrelated to charcoal identification were excluded. The whole tool, named CharKey, contains the key itself and the associated database including photographs. It can be downloaded on Figshare at https://figshare.com/s/d7d40060b53d2ad60389 (doi: 10.6084/m9.figshare.6396005). CharKey is accessible using the free software Xper 2 , specifically conceived for taxonomic description and computer aided-identification.  
  Address Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France  
  Corporate Author Thesis  
  Publisher Brill Academic Publishers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09281541 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 864  
Permanent link to this record
 

 
Author Gao, H.; Grüschow, S.; Barke, J.; Seipke, R.F.; Hill, L.M.; Orivel, J.; Yu, D.W.; Hutchings, M.; Goss, R.J.M. url  doi
openurl 
  Title Filipins: The first antifungal “weed killers” identified from bacteria isolated from the trap-ant Type Journal Article
  Year 2014 Publication RSC Advances Abbreviated Journal RSC Adv.  
  Volume 4 Issue 100 Pages 57267-57270  
  Keywords (up) Anti-fungal  
  Abstract Allomerus ants ensure that they have sufficient nitrogen in their diet by trapping and consuming other insects. In order to construct their traps, like the more extensively studied leaf cutter ants, they employ fungal farming. Pest management within these fungal cultures has been speculated to be due to the ants' usage of actinomycetes capable of producing antifungal compounds, analogous to the leafcutter ant mutualism. Here we report the first identification of a series of antifungal compounds, the filipins, and their associated biosynthetic genes isolated from a bacterium associated with this system.  
  Address State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of ZoologyKunming, Yunnan, China  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20462069 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 20 November 2014; Coden: Rscac; Correspondence Address: Goss, R.J.M.; School of Chemistry, University of St. AndrewsUnited Kingdom; Funding Details: 311848, EC, European Commission Approved no  
  Call Number EcoFoG @ webmaster @ Serial 567  
Permanent link to this record
 

 
Author Khia, A.; Ghanmi, M.; Satrani, B.; Aafi, A.; Aberchane, M.; Quaboul, B.; Chaouch, A.; Amusant, N.; Charrouf, Z. url  openurl
  Title Effect of provenance on the chemical and microbiological quality of essential oils of Rosmarinus officinalis L. in Morocco Type Journal Article
  Year 2014 Publication Phytotherapie Abbreviated Journal Phytotherapie  
  Volume 12 Issue 6 Pages 341-347  
  Keywords (up) Antibacterial; Antifungal activity; Chemical composition; Essential Oil; Provenance; Rosmarinus officinalis  
  Abstract This study is an assessment of the chemical quality and evaluation of antibacterial and antifungal activity of rosemary’s essential oils from three regions of Morocco (Rchida and Berkine/Eastern Morocco and Aknoul/North East of Morocco. The essential oils obtained by hydrodistillation of the leaves and young twigs of rosemary, were analyzed by GC / FID and GC/ MS. These essential oils are characterized by the presence of α and β-pinene, camphene, 1,8-cineole and camphor compounds. The quality of these essential oils met the AFNOR NF ISO 4730 rosemary Morocco kind (1,8-cineole). The evaluation of the antimicrobial activity of essential oils of Rosmarinus officinalis showed low efficacy against microorganisms tested which were all inhibited from 1/100 v/v except for Penicillium expansum whose growth was stopped at the concentration 1/250 v/v.  
  Address Département d’Environnement et Sociétés, UMR EcoFoG, CIRAD, BP 732Kourou cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 31 December 2014 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 574  
Permanent link to this record
 

 
Author Houel, E.; Rodrigues, A.M.S.; Jahn-Oyac, A.; Bessière, J.-M.; Eparvier, V.; Deharo, E.; Stien, D. url  openurl
  Title In vitro antidermatophytic activity of Otacanthus azureus (Linden) Ronse essential oil alone and in combination with azoles Type Journal Article
  Year 2014 Publication Journal of Applied Microbiology Abbreviated Journal J. Appl. Microbiol.  
  Volume 116 Issue 2 Pages 288-294  
  Keywords (up) Antifungal activity; Azoles; Dermatophytes; Essential oil; Otacanthus azureus; Synergy  
  Abstract Aims: We determined the chemical composition and investigated the antifungal activity of Otacanthus azureus (Linden) Ronse essential oil (EO) against a range of dermatophytes alone or in combination with azole antifungals. Methods and Results: Aerial parts of the plant were steam-distilled and the obtained oil was analysed by gas chromatography/mass spectrometry and 1H-NMR. It was shown to be largely composed of sesquiterpenes, with the main component being β-copaen-4-α-ol. Using broth microdilution techniques, this oil was found to have remarkable in vitro antifungal activities. Minimum inhibitory concentrations as low as 4 μg ml-1 were recorded. The analysis of the combined effect of the O. azureus EO with azoles using chequerboard assays revealed a synergism between the EO and ketoconazole, fluconazole or itraconazole against Trichophyton mentagrophytes. Notably, the O. azureus essential oil showed low cytotoxicity to VERO cells. Conclusions: The O. azureus essential oil alone or in combination with azoles is a promising antifungal agent in the treatment for human dermatomycoses caused by filamentous fungi. Significance and Impact of the Study: There is much interest in the study of essential oils for the discovery of new antimicrobial drugs. This study has highlighted the antidermatophytic activity of the O. azureus EO. © 2013 The Society for Applied Microbiology.  
  Address Institut de Recherche pour le Développement (IRD), UMR 152 Pharma-DEV, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13645072 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 February 2014; Source: Scopus; Coden: Jamif; Language of Original Document: English; Correspondence Address: Houël, E.; CNRS – UMR Ecologie des Forêts de Guyane (EcoFoG), Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP6010, 97306 Cayenne Cedex, French Guiana; email: emeline.houel@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 526  
Permanent link to this record
 

 
Author Houel, E.; Gonzalez, G.; Bessière, J.-M.; Odonne, G.; Eparvier, V.; Deharo, E.; Stien, D. pdf  openurl
  Title Therapeutic switching: From antidermatophytic essential oils to new leishmanicidal products Type Journal Article
  Year 2015 Publication Memorias do Inst. Oswaldo Cruz Abbreviated Journal  
  Volume 110 Issue 1 Pages 106-113  
  Keywords (up) Antifungal agents; Antiparasitic agents; Leishmania; Peritoneal macrophages – sesquiterpenes; Therapeutic switching  
  Abstract This study examined whether the antidermatophytic activity of essential oils (EOs) can be used as an indicator for the discovery of active natural products against Leishmania amazonensis. The aerial parts of seven plants were hydrodistilled. Using broth microdilution techniques, the obtained EOs were tested against three strains of dermatophytes (Trichophyton mentagrophytes, Microsporum gypseum and Microsporum canis). To compare the EOs antifungal and antiparasitic effects, the EOs activities against axenic amastigotes of L. amazonensis were concurrently evaluated. For the most promising EOs, their antileishmanial activities against parasites infecting peritoneal macrophages of BALB/c mice were measured. The most interesting antifungal candidates were the EOs from Cymbopogon citratus, Otacanthus azureus and Protium heptaphyllum, whereas O. azureus, Piper hispidum and P. heptaphyllum EOs exhibited the lowest 50% inhibitory concentration (IC50) values against axenic amastigotes, thus revealing a certain correspondence between both activities. The P. hispidum EO was identified as the most promising product in the results from the infected macrophages model (IC50: 4.7 μg/mL, safety index: 8). The most abundant compounds found in this EO were sesquiterpenes, notably curzerene and furanodiene. Eventually, the evaluation of the antidermatophytic activity of EOs appears to be an efficient method for identifying new potential drugs for the treatment of L. amazonensis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 March 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 587  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: