|   | 
Details
   web
Records
Author Poyatos, Rafael ; Granda, Victor ; Flo, Victor ; Adams, Mark A. ; Adorjan, Balazs ; Aguadé, David ; Aidar, Marcos P.M. ; Allen, Scott ; Alvarado-Barrientos, M.Susana ; Anderson-Teixeira, Kristina J. ; Aparecido, Luiza Maria ; Arain, M. Altaf ; Aranda, Ismael ; Asbjornsen, Heidi ; Baxter, Robert
Title Global transpiration data from sap flow measurements: the SAPFLUXNET database Type Journal Article
Year 2021 Publication Earth System Science Data Abbreviated Journal
Volume 13 Issue 6 Pages 2607–2649
Keywords (up)
Abstract Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN.
Address
Corporate Author Thesis
Publisher COPERNICUS PUBLICATIONS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1058
Permanent link to this record
 

 
Author Vacher, Corinne ; Castagneyrol, Bastien ; Jousselin, Emmanuelle ; Schimann, Heidy
Title Trees and Insects Have Microbiomes: Consequences for Forest Health and Management Type Journal Article
Year 2021 Publication Current Forestry Reports Abbreviated Journal
Volume 7 Issue 2 Pages 81-96
Keywords (up)
Abstract Purpose of Review Forest research has shown for a long time that microorganisms influence tree-insect interactions, but the complexity of microbial communities, as well as the holobiont nature of both trees and insect herbivores, has only recently been taken fully into account by forest entomologists and ecologists. In this article, we review recent findings on the effects of tree-insect-microbiome interactions on the health of tree individuals and discuss whether and how knowledge about tree and insect microbiomes could be integrated into forest health management strategies. We then examine the effects tree-insect-microbiome interactions on forest biodiversity and regeneration, highlighting gaps in our knowledge at the ecosystem scale. Recent Findings Multiple studies show that herbivore damage in forest ecosystems is clearly influenced by tripartite interactions between trees, insects and their microbiomes. Recent research on the plant microbiome indicates that microbiomes of planted trees could be managed at several stages of production, from seed orchards to mature forests, to improve the resistance of forest plantations to insect pests. Therefore, the tree microbiome could potentially be fully integrated into forest health management strategies. To achieve this aim, future studies will have to combine, as has long been done in forest research, holistic goals with reductionist approaches. Efforts should be made to improve our understanding of how microbial fluxes between trees and insects determine the health of forest ecosystems, and to decipher the underlying mechanisms, through the development of experimental systems in which microbial communities can be manipulated. Knowledge about tree-insect-microbiome interactions should then be integrated into spatial models of forest dynamics to move from small-scale mechanisms to forest ecosystem-scale predictions.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1059
Permanent link to this record
 

 
Author Essebtey, Salma El Idrissi ; Villard, Ludovic ; Borderies, Pierre ; Koleck, Thierry ; Burban, Benoït ; Le Toan, Thuy
Title Long-Term Trends of P-Band Temporal Decorrelation Over a Tropical Dense Forest-Experimental Results for the BIOMASS Mission Type Journal Article
Year 2021 Publication IEEE Transactions on Geoscience and Remote Sensing Abbreviated Journal
Volume 60 Issue Pages 1-15
Keywords (up)
Abstract Fostered by the upcoming BIOMASS mission, this article explores long-term trends of P-band temporal decorrelation over a tropical forest due to a time series of 617 days acquired during the TropiScat-2 experiment. The interest in this unique time series is twofold. First, it provides consistent statistics to monitor the yearly evolution of temporal coherences according to specific time scales of the BIOMASS tomographic and interferometric phases. Second, it provides key insights to explore new processing approaches with the combination of data from different orbit directions (ascending/descending) and different mission cycles separated by about seven months according to the current acquisition plan. For the first time, this study shows that 18-day coherences (corresponding to the time interval between the first and last acquisitions of the BIOMASS tomographic processing) can vary significantly according to rainy and dry seasons (medians from 0.3 to 0.9). The extension to time intervals of up to 90 days within both seasons and over two consecutive years puts forward the key role of the typical sporadic rainfalls occurring during dry periods in tropical rainforests, with a stronger impact on temporal coherence evolution compared to the more reproducible rainy seasons. Furthermore, outstanding values significantly above zero have been obtained for the 7- and 14-month coherences (medians of 0.35 and 0.2, respectively), opening the way to new methods of change detection. Overall, this study highlights the role of P-band temporal decorrelation not only as a disturbance factor for coherent applications but also as a relevant indicator of forest changes.
Address
Corporate Author Thesis
Publisher Institute of Electrical and Electronics Engineers Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1060
Permanent link to this record
 

 
Author Leroy, Celine ; Maes, Arthur QuyManh ; Louisanna, Eliane ; Schimann, Heidy ; Séjalon-Delmas, Nathalie
Title Taxonomic, phylogenetic and functional diversity of rootassociated fungi in bromeliads: effects of host identity, life forms and nutritional modes Type Journal Article
Year 2021 Publication New Phytologist Abbreviated Journal
Volume 231 Issue 3 Pages 1195-1209
Keywords (up)
Abstract Bromeliads represent a major component of neotropical forests and encompass a considerable diversity of life forms and nutritional modes. Bromeliads explore highly stressful habitats and root-associated fungi may play a crucial role in this, but the driving factors and variations in root-associated fungi remain largely unknown.
We explored root-associated fungal communities in 17 bromeliad species and their variations linked to host identity, life forms and nutritional modes by using ITS1 gene-based high-throughput sequencing and by characterizing fungal functional guilds.
We found a dual association of mycorrhizal and nonmycorrhizal fungi. The different species, life forms and nutritional modes among bromeliad hosts had fungal communities that differ in their taxonomic and functional composition. Specifically, roots of epiphytic bromeliads had more endophytic fungi and dark septate endophytes and fewer mycorrhizal fungi than terrestrial bromeliads and lithophytes.
Our results contribute to a fundamental knowledge base on different fungal groups in previously undescribed Bromeliaceae. The diverse root-associated fungal communities in bromeliads may enhance plant fitness in both stressful and nutrient-poor environments and may give more flexibility to the plants to adapt to changing environmental conditions.
Address
Corporate Author Thesis
Publisher New Phytologist Foundation Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1061
Permanent link to this record
 

 
Author Peterson, Michaela ; Jorge, Maria Luisa S.P. ; Jain, Avarna ; Keuroghlian, Alexine ; Oshima, Julia Emi F. ; Richard-Hansen, Cécile ; Berzins, Rachel ; Ribeiro, Milton Cezar ; Eaton, Don
Title Temperature induces activity reduction in a Neotropical ungulate Type Journal Article
Year 2021 Publication Journal of Mammalogy Abbreviated Journal
Volume 102 Issue 6 Pages 1-11
Keywords (up) activity patterns, global warming, South America, thermoregulation, tropical forest, white-lipped peccaries
Abstract Because global climate change results in increasingly extreme temperatures and more frequent droughts, behavioral thermoregulation is one avenue by which species may adjust. Changes in activity patterns in response to temperature have been observed in a number of mammal species, but rarely have been investigated in humid tropical habitats. Here we examine the relationship between activity patterns and microclimate temperatures for white-lipped peccaries (Tayassu pecari, Tayassuidae, Cetartiodactyla) in four distinct biomes—the Cerrado, the Pantanal, the Atlantic Forest, and the Amazon. From 2013 to 2017, we monitored 30 white-lipped peccaries fitted with GPS collars that included accelerometers and temperature sensors. White-lipped peccaries were primarily diurnal, with peaks of activity in the morning and late afternoon, except in the Amazon where activity was high throughout the day. Total time active did not vary seasonally. White-lipped peccaries were significantly less likely to be active as temperatures increased, with the probability of being active decreasing by >49% in all biomes between 30 and 40°C. Our findings indicate that white-lipped peccaries are likely to be adversely impacted by rising temperatures, through being forced to reduce foraging time during their prime active periods.
Address
Corporate Author Thesis
Publisher Oxford University Press Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1051
Permanent link to this record
 

 
Author Gargallo-Garriga, Albert ; Sardans, Jordi ; Alrefaei, Abdulwahed Fahad ; Klem, Karel ; Fuchslueger, Lucia ; Ramirez-Rojas, Irène ; Donald, Julian ; Leroy, Celine ; Van Langenhove, Leandro ; Verbruggen, Erik ; Janssens, Ivan A. ; Urban, Otmar ; Penuelas, Josep
Title Tree Species and Epiphyte Taxa Determine the “Metabolomic niche” of Canopy Suspended Soils in a Species-Rich Lowland Tropical Rainforest Type Journal Article
Year 2021 Publication Metabolites Abbreviated Journal
Volume 11 Issue 11 Pages
Keywords (up) Bacteria, Canopy soils, Epiphyte, French Guiana, Metabolomics
Abstract Tropical forests are biodiversity hotspots, but it is not well understood how this diversity is structured and maintained. One hypothesis rests on the generation of a range of metabolic niches, with varied composition, supporting a high species diversity. Characterizing soil metabolomes can reveal fine-scale differences in composition and potentially help explain variation across these habitats. In particular, little is known about canopy soils, which are unique habitats that are likely to be sources of additional biodiversity and biogeochemical cycling in tropical forests. We studied the effects of diverse tree species and epiphytes on soil metabolomic profiles of forest floor and canopy suspended soils in a French Guianese rainforest. We found that the metabolomic profiles of canopy suspended soils were distinct from those of forest floor soils, differing between epiphyte-associated and non-epiphyte suspended soils, and the metabolomic profiles of suspended soils varied with host tree species, regardless of association with epiphyte. Thus, tree species is a key driver of rainforest suspended soil metabolomics. We found greater abundance of metabolites in suspended soils, particularly in groups associated with plants, such as phenolic compounds, and with metabolic pathways related to amino acids, nucleotides, and energy metabolism, due to the greater relative proportion of tree and epiphyte organic material derived from litter and root exudates, indicating a strong legacy of parent biological material. Our study provides evidence for the role of tree and epiphyte species in canopy soil metabolomic composition and in maintaining the high levels of soil metabolome diversity in this tropical rainforest. It is likely that a wide array of canopy microsite-level environmental conditions, which reflect interactions between trees and epiphytes, increase the microscale diversity in suspended soil metabolomes
Address
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1041
Permanent link to this record
 

 
Author Van Langenhove, Leandro ; Depaepe, Thomas ; Verryckt, Lore T. ; Fuchslueger, Lucia ; Donald, Julian ; Celine, Leroy ; Krishna Moorthy, Sruthi M. ; Gargallo-Garriga, Albert ; Farnon Ellwood, M. D.; Verbeeck, Hans ; Van Der Straeten, Dominique ; Penuelas, Josep ; Janssens, Ivan A.
Title Comparable canapy and soil free living nitrogen fixation rates in e lowland tropical forest Type Journal Article
Year 2021 Publication Science of the total environment Abbreviated Journal
Volume 754 Issue Pages
Keywords (up) Biodiversité ; Systématique ; phylogénie ; taxonomie ; Ecologie, Environnement ; Ecosystèmes ; Biologie végétale ; Botanique ; Biodiversité
Abstract Biological nitrogen fixation (BNF) is a fundamental part of nitrogen cycling in tropical forests, yet little is known about the contribution made by free-living nitrogen fixers inhabiting the often-extensive forest canopy. We used the acetylene reduction assay, calibrated with 15N2, to measure free-living BNF on forest canopy leaves, vascular epiphytes, bryophytes and canopy soil, as well as on the forest floor in leaf litter and soil. We used a combination of calculated and published component densities to upscale free-living BNF rates to the forest level. We found that bryophytes and leaves situated in the canopy in particular displayed high mass-based rates of free-living BNF. Additionally, we calculated that nearly 2 kg of nitrogen enters the forest ecosystem through free-living BNF every year, 40% of which was fixed by the various canopy components. Our results reveal that in the studied tropical lowland forest a large part of the nitrogen input through free-living BNF stems from the canopy, but also that the total nitrogen inputs by free-living BNF are lower than previously thought and comparable to the inputs of reactive nitrogen by atmospheric deposition.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Anglais Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1006
Permanent link to this record
 

 
Author Levionnois, S.; Jansen, S.; Wandji, R.T.; Beauchêne, J.; Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Authier, L.; Heuret, P.
Title Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees Type Journal Article
Year 2021 Publication New Phytologist Abbreviated Journal New Phytol.
Volume 229 Issue 3 Pages 1453-1466
Keywords (up) bordered pits; drought-induced embolism; pit membrane; transmission electron microscopy; tropical trees; vessel grouping; xylem anatomy
Abstract Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure–functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging. © 2020 The Authors New Phytologist © 2020 New Phytologist Foundation
Address UMR BIOGECO, INRAE, Université de Bordeaux, Pessac, 33615, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028646x (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 997
Permanent link to this record
 

 
Author Maggia, Marie-Eugénie ; Decaëns, Thibaud ; Lapied, Emmanuel ; Dupont, Lise ; Roy, Virginie ; Schimann, Heidy ; Orivel, Jérome ; Murienne, Jérôme ; Baraloto, Christophier ; Cottenie, Karl ; Steinke, Dirk
Title At each site its diversity: DNA barcoding reveals remarkable earthworm diversity in neotropical rainforests of French Guiana Type Journal Article
Year 2021 Publication Applied Soil Ecology Abbreviated Journal
Volume 164 Issue Pages 103932
Keywords (up) DNA barcoding Tropical rainforest Community ecology Diversity level Sampling methods
Abstract Despite their recognized essential role in soil, earthworms in tropical environments are still understudied. The aim of this study was to re-evaluate the diversity at the regional scale, as well as to investigate the environmental and spatial drivers of earthworm communities. We sampled earthworm communities across a range of habitats at six localities in French Guiana using three different sampling methods. We generated 1675 DNA barcodes and combined them with data from a previous study. Together, all sequences clustered into 119 MOTUs which were used as proxy to assess species richness. Only two MOTUs were common between the six localities and 20.2% were singletons, showing very high regional species richness and a high number of rare species. A canonical redundancy analysis was used to identify key drivers of the earthworm community composition. The RDA results and beta-diversity calculations both show strong species turnover and a strong spatial effect, resulting from dispersal limitations that are responsible for the current community composition. Sampling in different microhabitats allowed the discovery of 23 MOTUs that are exclusively found in decaying trunks and epiphytes, highlighting hidden diversity of earthworms outside of soil.
Address
Corporate Author Thesis
Publisher Elsevier B.V. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0929-1393 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1055
Permanent link to this record
 

 
Author Li, Lingjuan ; Preece, Catherine ; Lin, Qiang ; Bréchet, Laëtitia M. ; Stahl, Clément ; Courtois, Elodie A. ; Verbruggen, Erik
Title Resistance and resilience of soil prokaryotic communities in response to prolonged drought in a tropical forest Type Journal Article
Year 2021 Publication FEMS Microbiology Ecology Abbreviated Journal
Volume 97 Issue 9 Pages
Keywords (up) drought, microbial communities, microbial network, tropical forest, resistance, resilience
Abstract Global climate changes such as prolonged duration and intensity of drought can lead to adverse ecological consequences in forests. Currently little is known about soil microbial community responses to such drought regimes in tropical forests. In this study, we examined the resistance and resilience of topsoil prokaryotic communities to a prolongation of the dry season in terms of diversity, community structure and co-occurrence patterns in a French Guianan tropical forest. Through excluding rainfall during and after the dry season, a simulated prolongation of the dry season by five months was compared to controls. Our results show that prokaryotic communities increasingly diverged from controls with the progression of rain exclusion. Furthermore, prolonged drought significantly affected microbial co-occurrence networks. However, both the composition and co-occurrence networks of soil prokaryotic communities immediately ceased to differ from controls when precipitation throughfall returned. This study thus suggests modest resistance but high resilience of microbial communities to a prolonged drought in tropical rainforest soils.
Address
Corporate Author Thesis
Publisher Oxford Academy Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1032
Permanent link to this record